EE2026: DIGITAL DESIGN

Academic Year 2021-2022, Semester 2

LAB 1: Quick Start Guide to Vivado 2018.2,
Basys 3 Development Board, and Verilog HDL

FOR ALL EE2026 LAB AND PROJECT SESSIONS [VENUE: Digital Electronics Lab E4-03-07]:

e You are strongly encouraged to bring to lab, your own laptop with Vivado 2018.2 already installed. You may still use the
desktop PCin lab if you do not have a laptop that can be brought to lab.

e Use the D:\MyWork folder for your work if you are using the lab PC. You are required to delete all folders within the
D:\MyWork folder before starting your lab session.

e Delete your work folder from the laboratory’s computers after your session is over. You are responsible to safeguard your
confidential programs. For assessable programs, you will be penalised if two programs with similarities beyond empirical
evidence are detected. Both the source(s) and recipient(s) of plagiarised programs are equally penalised.

o All lab sessions require that you have carefully reviewed the relevant lecture and tutorial materials before attendance.
Contents taught during the theory classes, with emphasis on the Verilog language and structure, will directly be applied to solve
practical problems during the lab sessions.

OVERVIEW:

Using a simple Boolean design problem, an introductory approach to the Vivado software used in EE2026 will be covered. Quick
instructions on downloading and installing the Vivado software on your personal computer are provided. The Vivado software is
a comprehensive integrated development environment (IDE) for FPGA design flow.

In this lab:

e Anintroduction to very basic Verilog HDL (Hardware Description Language) is provided.
e The overall process flow of designing, synthesising, simulating and implementing a program is covered.
e Programming Digilent’s Basys 3 development board, which features an FPGA from Xilinx’s Artix-7 family, is illustrated.

GRADED ASSIGNMENT [LUMINUS SUBMISSION: WEDNESDAY 26" JANUARY 2022, NOON]:

Details are available at the end of this lab manual

VIVADO DOWNLOAD AND INSTALLATION:
The Vivado 2018.2 software is already installed on the computers in the Digital Electronics Lab, and are ready for immediate usage.

It is also required that you install such software on your own personal computer, preferably before coming for the first lab
session. Some quick guidelines on installing the required software for EE2026 on your personal computer is provided in this section.

Software Weblink
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html

Software Name [Mac version is not supported]

Vivado Design Suite - HLx Editions - 2018.2 [Last Updated: Jun 18, 2018]

Warning: Do not use other versions of the software. Only the Vivado 2018.2 windows version has been tested.

Computer compatibility issues will occur with other versions of the software, and assessment of your project may not be
possible. This will lead to loss of project marks if your project cannot be assessed.

4 N\ 4 3\
Ver3|on Dounioadlipciides :Ili/a(éz.PSSIgnAsllulte Vivado HLx 2018.2: WebPACK and Editions - Windows Self
x Editions (Extracting Web InJRfr (EXE - 50.56 MB)
2019.1 Editions)
i MDS5 SUM Value : 1b003%8303ddb3bcaSe84fa1b26685b0
Download Type Full Product Installation
2018.3
, Last Updated Jun 18,2018 <
p
Answers 2018.x - Vivado Known Vivado HLx 2018.2: All OS installer Single-File Download (TAR/GZIP
-17.11GB) x
Issues
Documentation ReleaseNotes MD5 SUM Value : e87 0bb9d1dfc882b005550cfdbef
S J \ J

Select either one of the two available installers for download, based on your preference:

e Vivado HLx 2018.2: WebPACK and Editions - Windows Self Extracting Web Installer (EXE - 50.56 MB)
e Vivado HLx 2018.2: All OS installer Single-File Download (TAR/GZIP - 17.11 GB)

Registration is required for any downloads from the Xilinx website, but not required for installation and program usage.
Installation

During the installation phase, you will be given an option on the edition to install. The edition to be installed is:

e Vivado HL WebPACK

For subsequent customisation options, you can leave it to the default settings.

Post-Installation

Restart your computer before using the Vivado 2018.2 software. You may wish to uninstall the Xilinx Information Centre from the
Windows control panel as it is not needed. This will prevent unnecessary pop-up messages by Xilinx from appearing.

DESCRIPTION OF THE SIMPLE BOOLEAN DESIGN TASK

The following task is required to be implemented on the Basys 3 development board:

e When switch A turns on, only LED1 lights up. Switch A »»;: LED1
e When switch B turns on, only LED2 lights up. SwitchB Control % LEo2
e When both switches A and B turn on, LED1, LED2, and LED3 light up. * LED3

Complete the truth table for the simple boolean design task:

INPUT OUTPUT
A B LED1 | LED2 | LED3 MINTERM
0 0 AB
0 1 AB
1 0 AB
1 1 AB

Deriving an SOP Boolean Equation for the Design Task

Given any truth table with any number of input variables, the sum-of-products (SOP) or product-of-sums (POS) form may be used
to write out a Boolean equation for each output variable. Let us use the canonical SOP form for LED1:

LED1 = AB + AB

Work out the canonical SOP Boolean equations for LED2 and LED3

lllustrating Logic Expressions by Using a Schematic of Gates

The Boolean equations for LED1, LED2, and LED3, can be implement by using: 2 NOT gates, 3 AND gates, 2 OR gates

A _
A ——¢ AB
B
A
p }—0'AB—
B
A

LED1 = AB + AB
B —0—' So———| AB
B

Verilog Hardware Description and FPGA Implementation

Xilinx’s Vivado software is an integrated design environment that has numerous amounts of advanced features used in the industry,
and among which we will be introducing the following:

e Writing and editing HDL codes for digital system designs.

e Simulation of the design’s behaviour.

e Synthesis of the codes, in order to convert the design from textual description into logic gates.

e Implementation of the design to map and route the logic to a target FPGA.

e Optimising the synthesis, implementation, and bitstream generation according to the user’s strategies. The default
optimisation strategies shall be used in EE2026, as changing them is beyond the scope of introductory digital designs.

e Programming an FPGA with the optimised bitstream.

The remaining part of this lab manual will now briefly show the general steps required to go from the design task, to the FPGA
implementation on the Basys 3 development board, for EE2026 purposes.

INTRODUCTORY QUICK START GUIDE TO XILINX’S VIVADO 2018.2 SOFTWARE

During your lab session, your EE2026 graduate and lab assistants may provide you helpful hints on the usage of the Vivado 2018.2
software, beyond the most basic things that are described in this section.

Creating a New Verilog Project in Vivado
Start Menu: Open the executable: Vivado 2018.2. You will need to wait multiple seconds before the program opens
Quick Start: Select Create Project and continue

Project Name: Enter a Project name and Project Location. Ensure that the Project name and complete Project location for your
project folder does not have any spaces or special characters, and that your Project name does not start with a number

Project Type: Select RTL Project, and uncheck “Do not specify sources at this time”
Add sources:

e Create File. File type is Verilog. Example: simple_boolean

e Target language: Verilog. Simulator language: Mixed

Add constraints (optional): Click on next without any changes

Default Part: Specify the FPGA chip that will be used. The Basys 3 development board uses the xc7a35tcpg236-1 chip

4 New Project X

Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ’

Parts | Boards

Reset All Filters

Category. | General Purpose ~| Package: | opg23s ~| Temperature: | All Remaining ~
Famity. [Artix7 v | speea f-1 M|
Search -
Part IOPInCount Available I0Bs LUTElements FlipFlops BlockRAMS UltaRAMs ~ DSPs
Xc7a15tcpg236-1 236 108 10400 20800 25 0 15
| xc7az5tcpg236-1 236 106 20800 41600 50 0 90 |
Xc7a50tcpg236-1 236 106 32600 85200 75 0 120

< >

)
(=)

o]

New Project Summary: To create the project, click Finish

Define Module: A module, that is contained within the file, need top be created. Create one based on the inputs and outputs of
the simple boolean design task.

¢ Define Madule X

Define a module and specify VO Ports to add to your source file.

For each port specified
MSB and LSB values will be ignored unless its Bus column is checked '
Ports with blank names will not be written

Module Definition

Module name: 'my_control_module

/0 Port Definitions

+ -t

PortMame Direcion Bus MSB LSB
A input

B input

LED1 output

LED2 output v

LED3 output v

Cancel

Using Vivado Text Editor to Write Verilog HDL Code
Open the module that has been created by double clicking on it in the Sources window
UNDERSTANDING | TASK 3

Code the behaviour of the module by converting the SOP expressions for LED1, LED2, and LED3 to the Verilog equivalent.
The codes are to be inserted between the keywords module and endmodule.

Some Verilog representation of common operators are as tabulated below:

Operators Verilog Representation
OR A+B |
AND AB &
NOT A ~
XOR AD®B A

~ PROJECTMANAGER

4 satings simpo_booloans g
1 stcisoures_tinewsimple_booleany

QW X BB X /EQ @

- /1 =

Language Templates

% 1P catsog

~ IPINTEGRATOR
Greate Block Design

~ smuLTon

Run Simulaton

v RTLANALYSS

> OpenElaborateapesin

v smiHesis

» Runynesis

>

~ IWPLENENTATION
» Runimplementation
> openimplamentad 0

~ PROGRAIN ANDDEBUG
o

s 0ske

> OpenHarware Manager

i« | Designruns 2_oo

WNS TNS WHS THS TPWS TomPower FaledRoues LUT FF BRAMS URMN DSP Siat Eipsed Runs

Waos

Vol

The assign statement causes the left hand side of the expression to be updated every time there is a change on the right hand side
of the expression. It is therefore called a continuous assignment statement, describing combinational logic whereby the output
on the left is a function of current inputs on the right.

The statements on line 31 till line 33 execute concurrently. This is in contrast to sequential execution of statements in a computer
programming language such as C, or procedural assignment that will be taught in subsequent lab sessions.

Save your current file by clicking on File = Save File, or by pressing Ctrl+S. Each time a file is saved, a syntax check is carried out.
After saving, perform the following: In the Flow Navigator window, under RTL ANALYSIS: Open Elaborated Design, select
Schematic. The schematics window will appear, showing the Register Transfer Level (RTL) schematic of the design.

UNDERSTANDING | TASK 4

What similarities and differences do you notice between the RTL schematic and the schematic obtained from the previous
section. How do they compare to the actual schematic obtained on your computer screen?

o LED3
A 1 " [¢]
8 [
RTL_AND o LED1
o]
10 LED10_i It LED1
o .
1 RTL CR
RTL_AND] O Lem
o LED20 |
P 1o LED2i _
n ,1 o LED2 LED1 = AB + AB
RTL_AND
= RTL_OR

Testbench and Behavioural Simulation

After writing the codes, there is a need to test them to check their behaviours. Inputs are applied to a module, and the outputs
are checked to verify whether the module operates as intended. A testbench is an HDL module that is used to test another module.
In this example, a testbench will be created to apply inputs to the module to be tested:

e From the PROJECT MANAGER, click on Add Sources, followed by Add or create simulation sources

e Create File, and provide a Verilog file name, such as test_simple_boolean

e Inthe subsequent Define Module window, provide a Module name, such as my_control_module_simulation
e Do not input any I/0 Port Definitions, and click on OK to finish creating the simulation module template

From the Sources window, open the simulation file. Then, within the simulation module, provide the following codes and save
them, with the final screenshot looking similar to the image shown below:

Sources test_simple_boolean.v
Q E e + 'ﬂ‘ C:UsersiChristopheriLab_1/Lab_1.srcs/sim_1newitest_simple_boolean.v
v Design Sources (1 Q X% E] EI x ” EE 0

@ . my_control_module (simple_boolean v
» = Constraints
~ Simulation Sources (1 3 module my_control module simulation(

v sim_11(1

)

v @ |my_conlrol_module_!.im||\ation (test_simple_booleanwv) (1}'

@ dut: my_control_module (simple_boolea

reg A;

reg B;
2 wire LED1:
3 wire LED2;
Libraries Compile Order : wire LED3;
Source File Properties 7 my_control_module dut(A, B, LEDl, LED2, LED3);
@ test_simpla_boolsany - & g Stimul
~ 40 initial
+| Enabled
Location C:/UsersiChristopheriLab_1/Lab_1.srcsisim_1/new
Type: Verilog D
Library: wil_defaultlio |:| T
General Properties ¢ 3 =

If there are no syntax errors, in the Flow Navigator window, under SIMULATION, select Run Simulation, followed by Run
Behavioural Simulation in order to create the simulation waveform window.

A noticeable waveform pattern may not be seen by default, as the time resolution used in the simulation is very small as compared
to the amount of time the simulation is ran. Hence, with the simulation windows being the active window and from the menu,
select View — Zoom Fit, or press Ctrl+0

Look at the simulation results closely. How do the waveforms show that your design is indeed working as desired? Consider trying
out the various options provided in the simulation window before going back to the Workspace. Do not save the simulation

window waveform, as this consumes a large amount of storage space.

Untitled 1

é LED1
é LED2

8 LED3

Synthesis

Logic synthesis transforms HDL code into an optimised set of logic gates to reduce the amount of hardware, and to efficiently
perform the intended function.

Right-click on your Verilog design source file and select Set as Top. This option is disabled if the file is already the top module, and
in such a case, proceed directly to the next step. In general, when there are multiple design and simulation modules, the “Set as
Top” option selects the design, or simulation, modules to be considered when performing the different stages of the project flow.

In the Flow Navigator window, under SYNTHESIS, select Run Synthesis. While Vivado performs synthesis, the Project Status Bar
at the top right provides an indication of the ongoing progress.

After the synthesis has been successfully completed, in the Flow Navigator window, under SYNTHESIS, expand Open Synthesized
Design, and select Schematics. The schematic of the synthesised design will be generated and this synthesised circuit is an
optimised version of the RTL schematic that was obtained

Project Summary x | Device x | simple_boolean.v » | Schematic x 200
Q XX o & = C 6Cells 5l0Poris 8Nels &
A_IBUF_inst LED1_OBUF _inst
A ! ° I~ 0 > LEDM
IBUF OBUF
B_IBUF inst LED2_OBUF _inst
B ! ° e > LED2
IBUF LED3_OBUF _inst_i_1 OBUF

LED3_OBUF inst
- =0 > LED3

LUT2
OBUF

Click on the Look-up Table (LUT) that defines how the output LED3 behaves. The Cell Properties window will appear for that
specific LUT. In the Cell Properties window for the LUT of LED3, open the Truth Table tab. Notice how for this simple example,
this LUT is behaving as a simple AND gate.

UNDERSTANDING | TASK 5

Compare the optimised and non-optimised schematics. How is this optimised circuit equivalent to the SOP equations of
the simple boolean design task?

1o LED3_i
A " o
B s A_IBUF_inst LED1_OBUF _inst
RTL_AND | 0 | [, O
! 0 LEDW_\O A = > LEDA
o LED10 " LEDT IBUF OBUF
" o 1 Rt OR B_IBUF_inst LED2_OBUF _inst
¢ | o I O
B L= [LED2
RTL_AND 1 |: LED3 IBUF LED3_OBUF _inst i 1 OBUF
10 LED20 i LED2 . LED%_OBUF_inSt
0 —!
n S o] TuTZ [LED3
" LED2 OBUF
RTL_AND
- RTL_OR

Design Constraints

Design constraints, such as timing and physical I/O pin mapping, must be defined before doing an implementation, following which
the program can be downloaded to the FPGA device. Proceed with the following sequence:

e Expand PROJECT MANAGER in the Flow Navigator panel, and click Add Sources
e Select Add or create constraints and click Next

Constraints here

e o o o

Open the my_basys3_constraints.xdc file from the Sources window. It will be an empty .xdc file.
A template, known as the Basys3_Master.xdc is provided. Open that template using a basic text editor, such as notepad.
Copy all the contents from that template to your my_basys3_constraints.xdc. All the lines are commented out by default.
Link the signals (A, B, LED1, LED2, LED3) of your design, to some physical pins of the FPGA, by uncommenting relevant lines.

Click on Create File and give the XDC file a file name, such as my_basys3_constraints. The XDC format stands for Xilinx Design

Input signals can be linked to switches, whereas the output signals can be linked to LEDs, on the Basys3 development board.

An example of the above steps is shown below:

Sources ¢ Netlist o I
Qlz |+ o
~ Design Sources (1)
@-°. my_control_module (simple_booleany)

w [Constraints (1

w [constrs_1 (1)

[my_basys3_constraints xdc

v Simulation Sources (1

~ sim_1 (1)

~ @2 my_control_module_simulation (t=st_simple_boolean

@ dut: my_control_module (simple_booleany)

Hierarchy = Libraries Compile Order

Source File Properties 2 B X
" my_basys3_constraints xdc L e]
~' Enabled
Location C:UsersiChristopher/Lab_1/Lab_1 srcs/constrs_-

Type: XDC lz‘ =

< ->..

General Properties

Project Summary x my_basys3_constraints.xdc™ x
C:Jsers/Christopher/Lab_1/Lab_1.srcs/constrs_1inew/my_basys3_constraints.xdc

Q W « x B B X / B Q

12 set property PACEAGE PIN V17 [get ports [A}]
13 set property IOSTANDARD LVCMOS33 [get ports [A4}]
14 . set property PRCEAGE PIN V1&é [get ports [B}]
15 set property IOSTANDARD LVCMOS33 [get ports (B}]

47 ! set property PACKRGE PIN Ulé [get ports {[LEDL}]
4z | set property IOSTANDARD LVCMOS33 [get ports [LEDL}]
i set property PACKAGE PIN E19 [get ports {LEDZ2}]

set property IOSTANDARD LVCMOS33 [get ports [LEDZ}]
set_property PRCKRGE PIN Ul9 [get ports {LED3}]
set_property IOSTANDARD LVCMOS33 [get ports [LED3}]

?2 00

Implementation, Bitstream Generation and Program Download

The implementation phase will map the design to available physical resources on the FPGA hardware. In the Flow Navigator
window, under IMPLEMENTATION, select Run Implementation. This will make use of the design constraint file that had been
created earlier on.

After the implementation phase, there is a need to generate a file that can be downloaded to the FPGA. Such a file is called a
bitstream file, and it consists of binary values 0’s and 1’s that tells the FPGA how to behave. In the Flow Navigator window, under
PROGRAM AND DEBUG, select Generate Bitstream. A successful bitstream generation is the last step required before
downloading the program to the FPGA.

Before using your Basys 3 development board, and to prevent potential damage to it, take note of the following recommendations
and warnings to extend the longevity of the device:

A\ Make sure the Basys 3 development board is powered OFF by placing SW16 in the OFF position before connection
to/removal from the USB port of the computer.

A\ Do not force in the micro-USB cable upside down to the Basys 3 development board, as this will damage your micro-USB
port and device. Carefully connect to the micro-USB cable in the correct orientation.
[Common cause of board damage in EE2026 labs — Students are required to buy replacements in cases of negligence]

/A The chips on the board are electrostatic sensitive. Avoid touching them. Handle the board by the edges to prevent damage.

/\ Make sure the board is not in contact with any metal components, whether above or below. Do not place any liquid
sources near the FPGA board.

After connection of the Basys 3 development board to the computer, turn on the power by setting SW16 in the ON position. Test
the functionality of your Basys 3 development board before downloading any program to it, according to instructions that will be
provided during your lab session. If confirmed to be working, proceed with the following steps:

Expand Program and Debug in the Flow Navigator Panel

Expand Open Hardware Manager

Click Open Target

Select Auto Connect. In case connection fails, consider pressing the ‘reset’ button, or turn your device OFF for a few seconds
and ON again, while ensuring that it is detected and installed on your computer. Then try Auto Connect again

If successful, the Program Device will be enabled, and you will be able to select xc7a35t_0

e By default, if the bitstream was successfully generated, the path name in the Bitstream file is automatically provided

e Download the .bit file to the FPGA by clicking on Program

e o o o

UNDERSTANDING | TASK 6

Your program will then be downloaded to the FPGA. Verify the functionality of the design by using the input devices you
have assigned to A, B, and observing the output devices assigned to LED1, LED2 and LED3. Check what happens if the
‘reset’ pushbutton on the Basys 3 development board is pressed, or if power is loss for a short amount of time.

CLOSING NOTES FOR LAB 1

Now that you have successfully completed your FPGA design flow, one final practice task is provided to you for completion before
ending the lab session. This practice task is not graded, but you need to inform your guiding G.A. of the task completion.

FINAL UNDERSTANDING | PRACTICE TASK FOR LAB 1

Create a new Vivado project from scratch. Do not reuse your existing project or design
The same design as described for the simple boolean design task need to be implemented, with the following
exception: There is an additional switch C, and if this switch C is in the OFF state, it forces all the three LEDs to be in
the OFF state. If the switch Cis in the ON state, the design behaves exactly as described for the simple boolean design
task. The switch C is to be mapped to SW(Your birthday month + 3] on the Basys 3 development board

e Simulate your design, as well as implement it on the Basys 3 development board

GRADED POST-LAB ASSIGNMENT

Complete as much as possible, in one working bitstream for this whole assignment. It is much better to have a working program
with some completed functionalities, instead of submitting a program without a working bitstream (No marks given).

IMPORTANT CHARACTERS
In this assignment, these are the important characters to note from your student matriculation number:

e The 1t rightmost numerical value of your student matriculation number (Subtask A)

e The five rightmost numerical values of your student matriculation number (Subtask B)
e The 2" rightmost numerical value of your student matriculation number (Subtask C)
e The rightmost alphabet of your student matriculation number (Subtask C)

INITIALISATION

When the program starts, all 16 active-high switches (SW0 to SW15) are in the OFF position. All 16 active-high LEDs (LDO to LD15)
are also OFF. The seven segment displays must show the following patterns exactly, based on the 1% rightmost numerical value
of your student matriculation number:

1 Rightmost 0 1 2 3 4

Numerical Value

Required - = = - - === -
7-Segments Displays LU L -

-~
1
-
—
1
—
]
~—
]
[|
| |
1
1
1

1° Rightmost 5 6 7 8 9

Numerical Value

Required Il = = 1 I

=1 || [=1|| =1 i | | I "
7-Segments Displays =

AN)
|
-
~—
]

.
n
.|
|
-~
-~
1

SUBTASK A

Consider the 10 (ten) switches SWO to SW9. Whenever any of these 10 switches are ON, the corresponding LED LDX, where X is a
number ranging from 0 to 9, must be ON. Examples:

e |fSWO0is ON, then LDO must be ON
e [fSW3,SW7 and SW9 are ON, then LD3, LD7 and LD9 must be ON

SWO to SW9, and LDO to LD9, must all be constraint.
SW10 to SW15, and LD10 to LD14, must be ignored (Do not put a constraint to switches SW10 to SW15 and LEDs LD10 to LD14).

LD15 requires constraint from SUBTASK B onwards.

SUBTASK B

Continuing from SUBTASK A, create your personal password based on the five rightmost numerical values of your student
matriculation number (Ignore the alphabet character).

These five digits (May be less than five digits if you have duplicate numbers) will represent the switches that need to be ON, while
all the other switches between SWO0 to SW9 must be OFF, to be considered a correct password.

If the password entered by the user is the correct password, then LED LD15 must turn ON. LD15 is OFF whenever the password is
incorrect.

SUBTASK C

When the password from SUBTASK B is correct and LD15 is ON, it is also required to display the rightmost alphabet of your student
matriculation number on some specific anodes of the 7-segment displays. The character must be displayed exactly as indicated:

Rightmost Alphabet A|/B|E||H|[J|IL|M|N|R||U||W||X|Y
Required 7-Segments Character || [~/ || f= || = || H (| ad || |[oo || || || L0 || V(L H||

The anode on which the character should be displayed is dependent on the 2" rightmost numerical value of your student

matriculation number, as indicated in the table below:

2" Rightmost Anode || Anode || Anode || Anode

Numerical Value AN3 AN2 AN1 ANO
0 L on	on	L oN		
1 [on	on	[
2 _oN	L oN	on		
3 _on	L_oN			
4 L on	[L oN			
5 L on	[[
6 [[on	on	on		
7		on	on	
8 [L on	L oN			
9 I [on	I			

When the password from SUBTASK B is not correct, it is compulsory for the seven-segment displays to show the set of characters

indicated in the INITIALISATION phase.

SUGGESTIONS

e Create a new Vivado project for this assignment, instead of continuing from your previous Vivado project
e This assignment can be fully completed by using only what you have learnt throughout lab session 1. It is not

recommended to use contents not taught in this lab session, as this is meant to be a warming-up assignment
e The following will be taught in subsequent lectures / tutorials / labs, and are thus not necessary in lab 1:

o if-else functions
o always blocks
o multi-bits vector

GETTING STARTED WITH THE SEVEN-SEGMENT DISPLAYS

There are 7 LED segments in each display, with an additional decimal point segment. They are respectively denoted by “seg[0]” to

“seg[6]”, and “dp”, in the Basys_Master.xdc constraint file.

Common anode ” Y.

AN3 AN2 AN1 ANO
| I I

i

Y

LR P R

CACB CC CD CE CF CG DP

Four-digit Seven
Segment Display

Individual cathodes

There are 4 seven-segment displays on the Basys 3 development board. Each one of the displays is controlled by a common anode
pin, thus resulting in a total of 4 common anodes. These active-low pins are denoted as “an[3]” to “an[0]” in the Basys_Master.xdc

constraint file. (For more information, you can refer to the Basys 3 reference manual, pages 14 to 16)

In your constraint file, it is compulsory to put constraints to the 8 segments (7 segments + decimal point) of the seven-segment

display, and to the 4 anodes of the seven-segment display.

EXAMPLE:

If your student matriculation number is AO159089Y, then:

15t rightmost numerical value: 9
Five rightmost numerical values: 59089
2" rightmost numerical value: 8
Rightmost alphabet: Y

(INITIALISATION)

LD15 LD14 LD13 LD12 LD11 LD10 LD9 LD8 LD7 LD6 LD5 LD4 LD3 LD2 LD1

0O OOoOoODOOODOQOTO OGS OT OT OTGONano

EEEEE OFF

SW15 SwWi4 SW13 Swi12 swil sSwi1o0 sw9 sws sw7 SWé6 SW5 swa sw3 sw2 swi1

(WRONG PASSWORD)

LD15 LD14 LD13 LD12 LD11 LD10 LD9 LD8 LD7 LD6 LD5S D4 LD3 LD2 D1

0 00O0DO0O0O 0O OO ODTO OO OTG OTO OT OB

EEEEE OFF

SW15 Swi4 SWi13 SWi12 SW1l1 SW10 sSw9 sws sw7 SwWé SW5 swa sw3 sw2 swi

(CORRECT PASSWORD)

LD15 LD14 LD13 LD12 LD11

O 00aG0an

SW15 SwWi4 SWi13 Swi12 swil swio sw9 sws sw7 SwWé6 SW5 swa sw3 sw2 swi

DIsP1

"1 I"i

DIsP1

"1 17

I"1

DISP1

—

LUMINUS SUBMISSION INSTRUCTIONS

Ensure that your bitstream has been successfully generated and tested on your Basys 3 development board BEFORE archiving
your Vivado workspace for LumiNUS upload

It is compulsory to archive your project in a compressed form without any saved simulation waveforms. In the uploaded
archive, the codes (.v files) are important, not the waveforms (.wdb files). The archive size should not exceed 4 MB in size
for any lab assignments. Follow the instructions given in the pdf: “Archive Project in Vivado 2018.02”

After following the instructions in “Archive Project in Vivado 2018.02”, rename your project archive as indicated in the
appendix of this lab manual

Upload to LumiNUS EE2026 -> Files -> Lab and Project - Materials and Submissions -> Lab 1 Submission

Download your LumiNUS archive after uploading. Click and drag the single folder within that archive to desktop, and then
open the Vivado project in that extracted folder to see if it can be opened. Check if you can also run your bitstream correctly.
No project files and no working bitstream is equivalent to losing all marks

The LumiNUS upload must be completed by Wednesday 26" January 2022, 12:00 P.M. (Noon). Avoid uploading during the
grace period of 2 hours

A penalty of 25% applies for late submissions of up to 1 week.

The late submission folder closes 1 week after the original deadline. Late submissions are not accepted and not graded if a
submission is found within the on-time folder, or if grading has already started on an earlier submitted file. The late
submission folder will be located at: LumiNUS EE2026 -> Files -> Lab and Project - Materials and Submissions -> Lab 1
Submission (Late Submission)

Plagiarism is penalised with a 100% penalty for all SOURCES and RECIPIENTS

All past and future submissions, and marks, will be reviewed in greater detail, for any person found to have plagiarised

ALL THE SUBMISSION INSTRUCTIONS LISTED ABOVE WILL AFFECT YOUR GRADES!

GRADING PROCESS

During subsequent lab sessions, our graders will be providing you updates on the grading of your submission

Submissions not following all the LUMINUS SUBMISSION INSTRUCTIONS (listed above) will not be graded immediately, and
they will instead be reviewed towards the end of the semester. You will not be able to see your results during the lab sessions
in such situations

APPENDIX (COMPULSORY renaming before just LumiNUS upload):

It is compulsory to rename your project archive, just before the LumiNUS upload, as listed in the table below.

Do not change any other part of the naming. Simply copy the naming from the table below, and paste it while renaming your

project archive.

Penalties will be incurred if your submission cannot be found according to the exact naming template below.

Aaron Chan Zhi

L1 Thurs AM Aaron Chan Zhi 476 Archive

Ajay Shanker

L1 Thurs AM Ajay Shanker 806 Archive

Alphonsus Teow Rui Jie

L1 Thurs AM Alphonsus Teow Rui Jie 502 Archive

Alvin Ben Abraham

L1 Thurs AM Alvin Ben Abraham 394 Archive

Amadeus Lim Ding Shin

L1 Thurs AM Amadeus Lim Ding Shin 412 Archive

Amit Rahman

L1 Thurs AM Amit Rahman 599 Archive

Ang Jia Le Marcus

L1 Thurs AM Ang Jia Le Marcus_ 025 Archive

Chan Ee Hong

L1 Thurs AM Chan Ee Hong 898 Archive

Chen Zi Han

L1 Thurs AM Chen Zi Han 549 Archive

Chien Jing Wei

L1 Thurs AM Chien Jing Wei 540 Archive

CHUA WEI XUAN

L1 Thurs AM CHUA WEI XUAN 716 Archive

Chua Wen Xin Kyrene

L1 Thurs AM Chua Wen Xin Kyrene 431 Archive

Darren Loh Rui Jie

L1 Thurs AM Darren Loh Rui Jie 289 Archive

Dennis Wong Guan Ming

L1 Thurs AM Dennis Wong Guan Ming 806 Archive

Huang Yu Chiao

L1 Thurs AM Huang Yu Chiao 102 Archive

Ivan Theng Wen Rong

L1 Thurs AM Ivan Theng Wen Rong 344 Archive

Jia Yixuan

L1l Thurs AM Jia Yixuan 150 Archive

Karthikeyan Vigneshram

L1l Thurs AM Karthikeyan Vigneshram 697 Archive

Leong Wei Lun, Alfred

L1 Thurs AM Leong Wei Lun Alfred 609 Archive

Liu Junhao

L1 Thurs AM Liu Junhao 523 Archive

Marvin Pranajaya

L1 Thurs AM Marvin Pranajaya 683 Archive

Ng Sihan, Ian

L1 Thurs AM Ng Sihan Ian 817 Archive

Ong zhi Hong

L1 Thurs AM Ong Zhi Hong 922 Archive

Raymond Bala

L1 Thurs AM Raymond Bala 127 Archive

See Zhuo Rui Jorelle

L1 Thurs AM See Zhuo Rui Jorelle 490 Archive

Shanmugam Surya

L1 Thurs AM Shanmugam Surya 189 Archive

Shawn Tan Jinhui

L1 Thurs AM Shawn Tan Jinhui 247 Archive

Shin Donghun

L1 Thurs AM Shin Donghun 808 Archive

Stefan Choo Bin Hao

L1 Thurs AM Stefan Choo Bin Hao 098 Archive

Syed Muhamad Amali B Syed A A

L1 Thurs AM Syed Muhamad Amali B Syed 373 Archive

Teh Zi-Chun

L1 Thurs AM Teh ZiChun 328 Archive

Wen Chen Yu

L1 Thurs AM Wen Chen Yu 109 Archive

Wilson Ng Jing An

L1 Thurs AM Wilson Ng Jing An 686 Archive

Yong Chin Han

L1 Thurs AM Yong Chin Han 814 Archive

Yuan Xinrui

L1 Thurs AM Yuan Xinrui 211 Archive

